
COP 3330: Introduction – Part 2 Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Introduction to Object-Oriented Programming –

Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: Introduction – Part 2 Page 2 © Dr. Mark Llewellyn

Fundamentals of Object Orientation

• In non-object-oriented programming, a program is

usually process-oriented or data-oriented. In such

programs, there are typically data globally available and

procedures globally available. The main program, or its

subprograms, are in control and manipulate the data.

– That is, each part of the program goes to the global data, gets

part of it, manipulates it, and then, if necessary, saves any

changes to the data.

– One can think of the main program, through its subprograms

as having all the “intelligence” or behavior in the program and

the data has none of the intelligence. In this case, the main

program and its subprograms are responsible for everything.

COP 3330: Introduction – Part 2 Page 3 © Dr. Mark Llewellyn

Fundamentals of Object Orientation

• In object-oriented programming, a program is partitioned into a
set of communicating objects. Each object encapsulates all the
behavior and knowledge relating to one concept.

• In this fashion, one can think of an OO program as having
distributed control in that the “intelligence” (the ability to do
things) and the “knowledge” (the data to be able to do those
things), is distributed among the objects.

• When an object needs something from another object, it sends a
message to the other object, which then performs some action
and possibly returns a value to the caller.

– The first object might even create the second object is no such object
already exists. The second object, in turn, may need to communicate with
other objects to help it accomplish its task.

COP 3330: Introduction – Part 2 Page 4 © Dr. Mark Llewellyn

Fundamentals of Object Orientation

• To start an OO program executing, you typically create
a few objects and start them communicating with each
other.

• In particular, this situation occurs when an object-
oriented GUI (graphical user interface) is used as the
HCI (human computer interface) in an application.

– The windows, menus, and buttons are objects that need to be
created first, and then those objects typically just sit there
waiting for the user to interact with them, in which case they
send messages to each other (and probably to other invisible
objects) to accomplish the task.

– GUI-based programming falls under the paradigm of event-
driven programming.

– We’ll do GUI-based programming later in the semester.

COP 3330: Introduction – Part 2 Page 5 © Dr. Mark Llewellyn

Fundamentals of Object Orientation

• This view of OO programming, in which objects share the work
and the responsibilities, should seem familiar in that it is the way
humans typically interact with each other.

– One person, such as the owner of a business, doesn’t do everything
themselves. Instead, they assign tasks to their employees, each of whom
is responsible not only for doing the assigned task, but for maintaining the
data associated with that task.

– For example, a secretary might be responsible not only for typing papers,
but also for storing the papers in appropriate filing cabinets. Furthermore,
if the data in the files is confidential, the secretary might also be
responsible for guarding the files and granting or denying access to the
data. In the process of this work, the secretary may need to call on the
help of other people in or out of the office.

COP 3330: Introduction – Part 2 Page 6 © Dr. Mark Llewellyn

Advantages of OO Programming

• One of the primary advantages of the OO approach
compared to the non-OO approach is that, because the
intelligence is distributed among objects, each of which
maintains the data necessary to perform its tasks, it is
easier to keep things in small manageable units and to
understand how the units affect each other.

• In contrast, if every procedure is interacting with an
arbitrary part of a global set of data, the effect of one
procedure on all the others and on the system as a
whole is harder to understand.

• Thus, the distributed nature of OO programming
enhances the readability of the code.

COP 3330: Introduction – Part 2 Page 7 © Dr. Mark Llewellyn

Advantages of OO Programming

• An even bigger advantage of the OO approach is that a small
change in the structure of the global data in a non-OO program
may force a change to all the procedures that access that data.

• In contrast, a well-designed OO program has little global data
and instead stores the data in objects mostly for their local use.

• Thus, making a change to the way data is stored in one class of
objects often means that the only part of the program that needs
to be changes is the code in that class.

• Similarly, if a programmer decides that a particular object is
working too inefficiently, the programmer can redesign that
object’s behavior to be more efficient without affecting the rest
of the system, thus supporting the maintainability of the software.

COP 3330: Introduction – Part 2 Page 8 © Dr. Mark Llewellyn

Advantages of OO Programming

• Similarly, since each object has typically one

small well-defined role and carries the data it

needs with it, it is usually easier to reuse these

objects in other situations.

• Thus, the use of OO programming techniques, if

done well, increases the modifiability,

readability, reusability, and maintainability of

the software.

COP 3330: Introduction – Part 2 Page 9 © Dr. Mark Llewellyn

Object-Oriented Languages

• Programming languages support the OO

paradigm if they have certain features that make

it easier for the programmer to create objects and

have them send messages to each other.

• A programming language is said to be object-

oriented if it supports classes, objects, messages,

inheritance, and (subtype) polymorphism.

– Java is such a language, so too is C++.

– C is not an OO language.

COP 3330: Introduction – Part 2 Page 10 © Dr. Mark Llewellyn

Classes

• A class can be understood from a modeling perspective

as well as a programming language perspective.

• When designing a software application, classes model

abstract concepts that play an important role in the

system with well-defined responsibilities and

relationships with other classes.

• In an OO language, classes can be viewed as templates

(i.e., a blueprint) for objects that describe a certain type

of behavior or a certain set of responsibilities and any

associated data (characteristics or attributes).

COP 3330: Introduction – Part 2 Page 11 © Dr. Mark Llewellyn

Classes

• As an example, consider a job description for a
secretary or a police officer. The job description
indicates the responsibilities of any person filling one of
those roles.

• Individual secretaries have their own data (e.g. files,
desks, bosses) to maintain, but they all have similar
responsibilities for handing that data. In the same way,
all police officers in a given precinct will have similar
responsibilities but will have individual differences in
the data involved in their work, for example, their
name, which section of the precinct they are to patrol,
who their partners are, and which patrol cars they will
use.

COP 3330: Introduction – Part 2 Page 12 © Dr. Mark Llewellyn

Objects

• In an OO language, an object is an instance of a

class. An object is similar to an individual

secretary or police officer.

• An object’s associated class defines the type of

data the object maintains and its behaviors or

responsibilities toward that data.

• As with individual secretaries, individual objects

have their own set of data (their own state) to

maintain.

COP 3330: Introduction – Part 2 Page 13 © Dr. Mark Llewellyn

Objects

• The way that objects communicate and get each other to
perform some action is by sending messages to each
other.

• By sending a message to another object, the first object
causes the second object to execute some code. That
code is actually a procedure – which in object-oriented
languages is called a method – associated with the
second object.

– Message sending is actually a request (or command) from one
object to another object to execute one of its methods.

• Through this mechanism, objects can be thought of as
servers that provide a service to any client who asks (by
sending them a message).

COP 3330: Introduction – Part 2 Page 14 © Dr. Mark Llewellyn

Objects

• For example, a Graphics object g (in the java.awt

package) is an object designed to do you the service of
drawing shapes, among other things, in visual
components such as windows. For example, it can
draw a rectangle for you in its associated component at
whatever coordinates and of whatever size you want.
To get it to do so, you just send it a message such as:

g.drawRect(10, 10, 50, 100);

and g’s drawRect method will get executed, causing
a rectangle with upper left level corner at coordinates
(10, 10) and with width 50 and height 100 to be drawn
in the component.

COP 3330: Introduction – Part 2 Page 15 © Dr. Mark Llewellyn

The code

The results

The message

Version 1

COP 3330: Introduction – Part 2 Page 16 © Dr. Mark Llewellyn

The code

The results

The message

Version 2

COP 3330: Introduction – Part 2 Page 17 © Dr. Mark Llewellyn

The code

The results

In this case, 3

messages are

sent

Version 3

COP 3330: Introduction – Part 2 Page 18 © Dr. Mark Llewellyn

Classes and Objects

• Objects and classes are two fundamental concepts in the
object-oriented software development.

• An object has a unique identity, a state, and behaviors. In
real life, an object is anything that can be distinctly
identified.

• A class characterizes the structure of states and
behaviors that is shared by all of its instances.

• The terms object and instance are often used
interchangeably. An object is an instance of its class.

COP 3330: Introduction – Part 2 Page 19 © Dr. Mark Llewellyn

Classes and Objects

• The features of an object are the combination of the state
and behavior of that object.

– The state of an object is composed of a set of attributes
(fields) and their current values.

– The behavior of an object is defined by a set of methods
(operations, functions, procedures).

• A class is a template for its instances. Instead of defining
the features of objects, we define features of the classes
to which these objects belong.

COP 3330: Introduction – Part 2 Page 20 © Dr. Mark Llewellyn

Classes in Java

• For the moment we’ll ignore the optional parts of a Java
class definition.

• A class is defined in using the keyword class followed by
a class name and braces surrounding the declaration and
implementation of the methods of the class and the
declaration of the variables storing the data of objects of the
class.

• For example, the Java code shown on the next page defines a
class Person that stores a name and birth date. It has two
variables, a constructor and two methods.

Java Convention

Class names should be nouns, in mixed case with the first letter capitalized and the first

letter of each internal word capitalized. Try to keep your class names simple and

descriptive. Use whole words – avoid acronyms and abbreviations (unless the

abbreviations is much more widely used than the long form, such as URL or HTML.

Examples: House, HousePlans, ObjectViewOrientation

COP 3330: Introduction – Part 2 Page 21 © Dr. Mark Llewellyn

An Example Class in Java

public class Person {

private String name;

private Date birthdate;

public Person (String who, Date bday) {

this.name = who;

this.birthdate = bday;

}

public String getName(){

return name;

}

public Date getBirthdate(){

return birthdate;

}

}

2 variables

A constructor

method

A method

A method

COP 3330: Introduction – Part 2 Page 22 © Dr. Mark Llewellyn

Classes in Java

• The non-optional parts of a method declaration include: a

return type, the method name, the list of parameters in

parentheses, and then the body of the method encloses in

braces.

• A variable declaration includes the type of the variable,

the name of the variable, and an optional initial value.

• Notice how this class actually uses two other classes,

namely String (in the java.lang package) and

Date (in the java.util package) for storing the data

for this class.
Java Convention

Method names should be verbs, in mixed case with the first letter lowercase and the first

letter of each internal word capitalized.

Examples: getHouseName(), setObjectColor();

COP 3330: Introduction – Part 2 Page 23 © Dr. Mark Llewellyn

Classes in Java

• A user of the Person class would typically

construct a Person object (an instance) using

the constructor method:

Person firstPerson = new Person(“Suzi”, new Date(1000000000));

• Then the user would send the object a message such

as:

String firstPersonName = firstPerson.getName();

COP 3330: Introduction – Part 2 Page 24 © Dr. Mark Llewellyn

Classes in Java

• In order to execute their methods properly, most
objects need to store data. This data is stored in
instance variables (also called fields), which, in Java,
are declared in the body of the class declaration, but
outside the body of any method or constructor.

• Instance variables are different than local variables,
which are variables declared in method or constructor
bodies, in that local variables exist and store data only
during execution of the body in which they were
declared whereas instance variables exist and store
data during the lifetime of the object.

• Therefore, instance variables provide state
information for the objects.

COP 3330: Introduction – Part 2 Page 25 © Dr. Mark Llewellyn

Classes in Java

• In our previous example, a Person object has an
instance variable called name that stores a reference
to the String object containing the person’s name.
This String forms part of the state of the Person
object.

• In Java, only variables of a primitive type actually
store their data in the variable. For all variables of an
object type, the variables store a reference to the data.

– Its common to visualize the reference as a pointer from the
variable to the data (see next page), although the reference
can actually be implemented through means other than
direct pointers.

COP 3330: Introduction – Part 2 Page 26 © Dr. Mark Llewellyn

Classes in Java

String name “Suzi”

3

int x

object types use references to data

primitive types store data directly

COP 3330: Introduction – Part 2 Page 27 © Dr. Mark Llewellyn

Classes in Java

• The public and private accessibility keywords
(modifiers) in front of the methods, variables and
class declarations restrict the objects that can access
the objects of the Person class and send them
messages.

• We’ll look at this in much greater detail later, but in
short:

– public classes are accessible by any other class, public
methods can be invoked on an object by any other object,
and public variables of an object can be accessed (read and
written) by any other object.

– private methods and instance variables can be invoked or
accessed only within the class body itself.

COP 3330: Introduction – Part 2 Page 28 © Dr. Mark Llewellyn

Classes in Java

• Because two objects of the same class have the same
set of methods and therefore, can be sent the same set
of messages, you might initially think that all of the
objects of that class behave identically, in which case
there would be little reason to ever create more than
one object of a class.

• What distinguishes the behavior of two objects of the
same class is their state. The two objects may behave
differently because the two objects’ instance variables
may have different values.

• Consider the following example:

COP 3330: Introduction – Part 2 Page 29 © Dr. Mark Llewellyn

Classes in Java

• Suppose we create two Person objects:

Person favoriteActor = new Person(“Hugh Grant”, new Date(1000000));

Person favoriteActress = new Person(“Eva Mendes”, new Date(100000));

• Now both object can respond to the getName message as in:

String hisName = favoriteActor.getName();

String herName = favoriteActress.getName();

They will however, return different values (see next page).

• Thus, the result of a method call may vary depending on the state
of the object, these methods are also called instance methods.

COP 3330: Introduction – Part 2 Page 30 © Dr. Mark Llewellyn

COP 3330: Introduction – Part 2 Page 31 © Dr. Mark Llewellyn

Class Methods and Class Variables in Java

• Java also includes objectless variables and objectless
methods called class variables and class methods.

– In fact, by using the objectless features of Java, it is possible to
write a program that is almost completely non-OO. We’re not
going to do that, but it is important to know when and when
not to use these features of Java.

– Another way of thinking about class methods, is that they are
messages that can be sent to the class itself instead of to an
object belonging to that class, and class variables can be
thought of as the state of the class itself.

• Both class variable and class methods are declared in
Java using the keyword static.

COP 3330: Introduction – Part 2 Page 32 © Dr. Mark Llewellyn

Class Variables in Java and Their Uses

• Class variables can be thought of as variables that are

shared among all the objects of a given class (and among

objects outside of the class is the variable is made

public) and so such variables cannot have unique values

for each object of the class.

• The typical use of class variables is for defining

constants. Such constants are not only shared among all

objects of the class, but are often made publicly available

to be shared among all object and classes in a program.

• In Java, a constant is indicated by the keyword final.

COP 3330: Introduction – Part 2 Page 33 © Dr. Mark Llewellyn

Class Variables in Java and Their Uses

• As an example of a class variable, a programmer might define the
physical constant c representing the speed of light in a vacuum in
a class PhysicalConstants by including in the body of that class a
line like:

public final static int c = 299792458;

• Since it is declared public and static, this constant can be accessed
by any object at any time independently of any objects of the class
PhysicalConstants.

• A Java program could refer to this constant by using the notation:
PhysicalConstants.c as in:

double distance = PhysicalConstants.c *40;

which would compute the distance in meters that light travels in
40 seconds.

COP 3330: Introduction – Part 2 Page 34 © Dr. Mark Llewellyn

Class Variables in Java and Their Uses

• In addition to use in defining constants, class variables can be used

to allow all instances (all objects of the class) to share a piece of

data.

• For example, suppose all objects of a class need to know how

many objects of that class have been created. You could give each

object a copy of that data or give each object a reference to that

data, but in either case, not only is space wasted because of the

duplication, but if the data is changed in one object, it becomes

necessary to update the value in all the objects of the class. This

would obviously be a waste of time and may easily lead to errors

if one object is accidently missed. A much better solution is to

make the count a static variable in the class to be shared by all the

objects.

COP 3330: Introduction – Part 2 Page 35 © Dr. Mark Llewellyn

Class Methods in Java and Their Uses

• Class methods can be thought of as methods that are not a form of
message passing to objects of the class, but rather can be invoked
independently of any objects of the class.

• In general, class methods are useful when objects of that class are
stateless (i.e., have no instance variables) or when some of the
methods of the class do not use the state of the objects but instead
merely manipulate the data passed in parameters.

• For example, all the methods in the Math class are public class
methods (they have public and static modifiers in their
declarations) and so can be accessed and executed by any body of
Java code without reference to Math objects. For example, the
sin method in the Math class is executed as:

double y = Math.sin(x);

COP 3330: Introduction – Part 2 Page 36 © Dr. Mark Llewellyn

Class Methods in Java and Their Uses

• It is appropriate that these methods are class methods because they
perform mathematical operations on the arguments passed to those
methods, and as such, a Math object would play no significant
role.

• When designing a class and figuring out what methods it should
have, it is not always immediately obvious whether a method
should be a class method or an instance method.

• For example, suppose you are defining a Set class (different from
the java.util.Set interface), objects of which behave like
finite unordered mathematical sets of integers. A natural
operation to be performed on such a set is the intersection of it
with another set.

• There are (at least) two ways such an operation can be declared in
the Set class:

COP 3330: Introduction – Part 2 Page 37 © Dr. Mark Llewellyn

Class Methods in Java and Their Uses

Public Set intersect (Set otherSet)

Public static Set intersect (Set firstSet, Set secondSet)

• In the first case, the user would get the intersection by sending a

Set object s1 a message asking it to return the intersection of itself

and a second Set object s2, though a method call such as:

Set intersection = s1.intersect(s2);

• In the second case, the user could find the intersection by calling

the class method, passing both sets as parameters:

Set intersection = Set.intersect(s1,s2);

• Which version is better?

COP 3330: Introduction – Part 2 Page 38 © Dr. Mark Llewellyn

Class Methods in Java and Their Uses

• One advantage of the second version is that it displays

the natural symmetry in the intersection operation, in

which neither set plays a special role. Also, the second

version will not necessarily fail with a

NullPointerException if s1 or s2 happened to

be null. In other words, the intersect(Set, Set)

class method could test the nullity of s1 and s2 and

treat a null s1 or s2 as an empty set and simply return

an empty set. In contrast, the instance version (verison

1) will throw an exception before the

intersect(Set) instance method even begins

execution if s1 is null.

COP 3330: Introduction – Part 2 Page 39 © Dr. Mark Llewellyn

Class Methods in Java and Their Uses

• However, an advantage of the first version (the instance

method) is that it is a natural way to proceed from an OO

perspective.

• That is, it is natural to think of asking a Set object to tell

you what it has in common with another set.

• Also, unless the intersect(Set) instance method is

declared final, it can be overridden by sublcasses of Set,

which, although not obviously useful here, is a feature

that future users might find very valuable. We’ll discuss

overriding later.

COP 3330: Introduction – Part 2 Page 40 © Dr. Mark Llewellyn

Objects in Java – An Example

• A class in Java can be defined as follows:

class Rectangle {

private int length, width;

public int area() {………}

public void changeSizes(int x, int y)

{ ……… }

• The name of the class is: Rectangle. Its attributes are: length,
width. Its methods are: area, changeSizes

• This Rectangle class is a template for all rectangle objects. All
instances of this class will have same structure.

COP 3330: Introduction – Part 2 Page 41 © Dr. Mark Llewellyn

Objects in Java – An Example
• An object in Java is created from a class using the new

operator.
Rectangle r1 = new Rectangle();

Rectangle r2 = new Rectangle();

length

r1
width

length

width
r2

COP 3330: Introduction – Part 2 Page 42 © Dr. Mark Llewellyn

Graphical Representation of Classes Using UML

ClassName is the name of the class

Each field is

[Visibility] identifier [Type] [=initial value]

Each method is

[Visibility] identifier (parameter-list) [Type]

Example: • We may not specify field,

methods parts in

complex abstract diagrams

ClassName

field_1

...

field_n

method_1

...

method_m

Rectangle

– length: int

– width: int

+ area (): int

+ changeSizes (int x, int y): void

Visibility/Accessibility modifiers:

− indicates private, + indicates public,

indicates protected, ~ indicates package

COP 3330: Introduction – Part 2 Page 43 © Dr. Mark Llewellyn

• We may omit ClassName, and just use objectName.

In this case the class of the object is no interest for us.

• We may omit objectName, and just use :ClassName.

In this case, the object is an anonymous object.

Rectangle r1 = new Rectangle();

r1.length = 20;

r1.width = 10;

Rectangle r2 = new Rectangle();

r2.length = 40;

r2.width = 30;

objectName: ClassName

field_1 = value_1

...

field_n = value_n

r1:Rectangle

length = 20

width = 10

r2:Rectangle

length = 40

width = 30

Graphical Representation of Classes Using UML

COP 3330: Introduction – Part 2 Page 44 © Dr. Mark Llewellyn

DAY 2 – Practice Problem 1

• Using the basic UML notation introduced on the

previous few pages, construct a UML class

diagram for a basic TV remote control. Name the

class RemoteControl. The class has three

attributes (fields), current channel (integer),

current volume (integer), and current state of the

TV (on or off). The class will have five methods

(not counting the constructor which is often

omitted from UML diagrams). These five

methods allow for increasing and decreasing the

volume by 1 unit, increasing and decreasing the

channel by 1 unit, and switching the TV on or off.

• We’ll look at the solution next class.

On/Off

Vol Up

Vol Down

Ch Up

Ch Down

